TUFFAK MG

Machine Grade

TUFFAK MG machine grade polycarbonate is a low stress engineering plastic designed for heavily fabricated, tight tolerance parts. It features extremely high impact strength, high modulus of elasticity, outstanding dimensional stability, and good electrical properties. TUFFAK MG is available in clear and black and is textured on both sides.

Applications

Machined parts, manifolds, insulators, and electrical components

Tvnic	al Proporti			
Typical Properties				
Property	Method	Units	Values	
PHYSICAL				
Specific gravity	ASTM D 792	-	1.2	
Water absorption, 24 hours @ 73°F	ASTM D 570	%	0.15	
Poisson's ratio	ASTM E 132	-	0.38	
MECHANICAL				
Tensile strength, break	ASTM D 638	psi	9,500	
Tensile strength, yield	ASTM D 638	psi	9,000	
Tensile modulus	ASTM D 638	psi	340,000	
Elongation	ASTM D 638	%	110	
Flexural strength	ASTM D 790	psi	13,500	
Flexural modulus	ASTM D 790	psi	345,000	
Compressive strength	ASTM D 695	psi	12,500	
Compressive modulus	ASTM D 695	psi	345,000	
Shear strength, ultimate	ASTM D 732	psi	10,000	
Shear strength, yield	ASTM D 732	psi	6,000	
Shear modulus	ASTM D 732	psi	114,000	
Rockwell hardness	ASTM D 785	-	M70 / R118	
THERMAL				
Coefficient of thermal expansion	ASTM D 696	in/in/°F	3.75 x 10⁻⁵	
Coefficient of thermal conductivity	ASTM C 177	BTU·in/hr·ft2·°F	1.35	
Heat deflection temperature @ 264 psi	ASTM D 648	°F	270	
Heat deflection temperature @ 66 psi	ASTM D 648	°F	280	
Brittleness temperature	ASTM D 746	°F	-200	
ELECTRICAL				
Dielectric constant @ 10 Hz	ASTM D 150	-	2.96	
Dielectric constant @ 60 Hz	ASTM D 150	-	3.17	
Volume resistivity	ASTM D 257	Ohm∙cm	8.2 x 10 ¹⁶	
Dissipation factor @ 60 Hz	ASTM D 150	-	0.0009	
Arc resistance	-	-	-	
Stainless steel strip electrodes	ASTM D 495	Seconds	10	
Tungsten electrodes	ASTM D 495	Seconds	120	
Dielectric strength, in air @ 0.125"	ASTM D 149	V/mil	380	
FLAMMABILITY				
Flame class @ 0.060"	UL 94	-	V-0	

TUFFAK MG

Fabrication guidelines

Cutting: A circular saw blade with carbide teeth utilizing the "triple chip" tooth design is the preferred method of cutting TUFFAK MG polycarbonate sheet. Table or overhead panel saws are normally used. Circular saws should be run in the speed range of 6000-8000 ft/min. Blades for cutting 3/32" and thicker material should have 3-5 teeth per inch. The hook or rake angle should be 10°-15°.

Drilling: Standard high speed twist drills should be used when drilling TUFFAK MG polycarbonate sheet. To achieve the best possible hole, surface speeds of 200 to 300 in./min for drills less than $\frac{1}{4}$ " to $\frac{1}{2}$ " in diameter should be used with speeds of 500-700 in./min for drills under $\frac{1}{4}$ " diameter, and 1500 to 1600 in./min for drills $\frac{1}{4}$ " to 1/2:" in diameter. A feed rate of 0.001 to 0.0015 per revolution is also recommended.

Milling: Milling can be used for either roughing or achieving extremely high-quality surface finishes. Best results can be obtained when using a high-speed steel end drill of the four-flute type with a 15° rake angle.

Turning: Using conventional metal turning lathes with variable speed control, TUFFAK MG polycarbonate sheet can be cut without coolant at turning speeds of 1500 to 2500 in/min. If cut at higher speeds, water is preferred as a coolant. Good results can be obtained when using a round tip cutter. At high turning speed, a shallow cut and a low cross-feed rate. Radii of 15 to 30 mils are suggested for round tip cutters.

Polishing: TUFFAK MG machine grade polycarbonate is manufactured using clear resin but is textured on both sides so it is not optically clear. It can be mechanically polished or solvent vapor polished to yield an optically clear finished part. Please follow all EPA, local, state, and governmental guidelines when using any chemical-type polishing method.

Cautions

The following are suggested guidelines or concerns regarding machining working with TUFFAKMG polycarbonate sheet or any other engineering plastics.

- 1. Thermal expansion is up to 10 times greater with plastics than metals
- 2. Plastics will lose heat more slowly than metals
- 3. Avoid localized overheating
- 4. Softening/melting temperatures of plastics are much lower than metals

Regulatory code compliance and certifications

Flammability – Plastic component	UL 94	UL File #E87887
Polycarbonate sheet classification	A-A-59502	Type 1 Class 1
Polycarbonate resin classification	ASTM D 3935	PC0116

These suggestions and data are based on information we believe to be reliable. They are offered in good faith, but without guarantee, as conditions and methods of use are beyond our control. We recommend that the prospective user determines the suitability of our materials and suggestions before adopting them on a commercial scale.

TUFFAK MG

